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1. 

The problem of transverse vibrations of thin, isotropic and orthotropic rectangular
plates with rectangular or circular holes when the edge of the perforation remains
free has attracted considerable interest, the problem being motivated by
operational reasons (passage of ducts or conduits, electrical cables, etc.) [1–4].
Approximate, analytical solutions have been employed and the results compared
with finite element (FE) determinations.

Considerably less work has been performed when the edges of the cutout are
fixed, e.g., simply supported or clamped. An exception to this is a rather recent
publication where membranes and isotropic plates have been analyzed [5].

The present study deals with the determination of the fundamental frequency
of transverse vibration of the structural system shown in Figure 1. Orthotropic
constitutive relations are assumed. All the possible combinations of boundary
supports for the outer and inner boundaries have been considered and are
summarized in Table 1.

The geometric configurations correspond to plates of outer boundaries and
concentric inner holes of equal aspect ratio. Hence, a/b= c/d; see Figure 1. The
case where c/a=0 corresponds to a central, concentrated support. Approximate

Figure 1. Orthotropic doubly connected plate executing transverse vibrations (a/b= c/d).
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T 1

Combinations of boundary supports

Case Inner boundary Outer boundary

(A) SS SS
(B) C SS
(C) SS C
(D) C C

analytical solutions appear, at best, exceedingly difficult. In view of this, a
numerical solution is provided using the finite element method and employing a
well known code [6]. On the other hand and in order to ascertain the relative
accuracy of the results, one configuration was also solved using the orthotropic
finite element developed in reference [7] which is based on the very accurate
element due to Bogner et al. [8] for isotropic plates. In view of the symmetry of
the configuration and of the fundamental mode shape, one-quarter of the doubly
connected plate was modelled for this particular case.

2.  

All calculations have been performed for a hypothetical orthotropic structural
element for which D2/D1 =1/2; Dk /D1 =1/3; n2 =0·3 where Lekhnitskii’s classical
notation has been used [9]. On the other hand all the geometric configurations are
defined by the equality a/b= c/d, as previously stated.

Table 2 depicts a comparison of values of the fundamental frequency coefficient
(V1 =v1(2a)2zrh/D1, where r is the mass density of the material and h is the
thickness of the plate) for the case a/b=3; c/a=0·8 obtained for different finite
element algorithmic procedures [6–8], for the combinations of boundary
conditions defined previously as (A), (B), (C) and (D) in Table 1. The agreement
is excellent from a practical viewpoint.

Table 3 presents fundamental eigenvalues of the configurations shown in
Figure 1 as a function of a/b and c/a. No claim of originality is made but since

T 2

Comparison of fundamental frequency coefficients in the case of the configuration
shown in Figure 2, as a function of the number of elements, using different FE codes

and for different combinations of boundary conditions

Number of
FE code elements SS–SS C–SS SS–C C–C

[7–8] 243 1088·0 1605·0 1628·2 2294·1
[7–8] 432 1087·2 1604·9 1627·6 2294·0
[6] 2700 1085·5 1604·9 1626·6 2294·1
[6] 10800 1084·8 1604·8 1626·0 2294·0
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T 3

Fundamental eigenvalues v1(2a)2zrh/D1 of the configuration shown in Figure 1 as
a function of a/b and c/a

Number of
a/b c/a SS–SS C–SS SS–C C–C elements

3 0 110·84 115·37 183·13 188·05 7500
0·2 151·80 155·31 288·44 233·49 7200
0·4 209·68 231·59 298·08 330·52 6300
0·6 351·32 447·20 494·82 628·37 4800
0·8 1085·8 1604·9 1626·8 2294·2 6912

3/2 0 59·17 63·81 86·18 92·24 5400
0·2 96·65 101·39 139·20 147·08 5184
0·4 148·99 177·66 212·48 256·44 4536
0·6 282·00 393·60 416·78 568·24 3456
0·8 1015·3 1553·4 1564·5 2248·1 1944

1 0 40·38 43·59 58·71 62·92 6400
0·2 66·01 69·30 95·77 101·11 6144
0·4 103·20 123·05 147·84 178·49 5376
0·6 197·16 275·42 292·58 399·04 4096
0·8 715·71 1095·2 1104·5 1587·2 3600

2/3 0 24·21 25·79 36·67 38·61 5400
0·2 36·98 38·32 53·03 55·17 5184
0·4 54·09 62·34 75·82 88·37 4536
0·6 96·77 130·17 139·26 185·06 3456
0·8 326·87 494·19 498·24 711·54 1944

1/3 0 13·81 14·14 25·29 25·58 7500
0·2 16·99 17·19 28·22 28·46 7200
0·4 21·85 23·18 33·22 35·02 6300
0·6 33·71 40·14 47·80 56·67 4800
0·8 92·17 131·15 134·88 185·52 6192

Note: the case c/a=0 corresponds to a concentric, point support.

the problem is of considerable interest in civil and naval engineering structures,
it is hoped that the present approach and results will be of interest to structural
designers.

Figure 2. One-quarter of the configuration corresponding to a/b=3; c/a=0·8.



   736



The present study has been sponsored by the Secretarı́a General de Ciencia y
Tecnologı́a of Universidad Nacional del Sur and by CONICET Research and
Development Program at the Institute of Applied Mechanics.



1. P. A. A. L, E. R and R. E. R 1997 Journal of Sound and Vibration
202, 275–283. Transverse vibrations of simply supported rectangular plates with
rectangular cutouts.

2. D. R. A, H. A. L, P. A. A. L and R. E. R 1997 Journal of
Sound and Vibration 202, 585–592. Transverse vibrations of simply supported
rectangular plates with rectangular cutouts carrying an elastically mounted
concentrated mass.

3. P. A. A. L, G. E, M. D. Ś, H. C. S, D. A. V and S. V
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